Big Data Management and Analysis in Linux

Niveau
Tijdsduur
Logo van VU Amsterdam Summer School
Opleiderscore: starstarstarstarstar_half 9,3 VU Amsterdam Summer School heeft een gemiddelde beoordeling van 9,3 (uit 3 ervaringen)

Tip: meer info over het programma, startdatum, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen

Er zijn nog geen startdata bekend voor dit product.

VU Amsterdam Summer School biedt haar producten standaard aan in de volgende regio's: Amsterdam

Beschrijving

The growing availability of extremely large datasets requires scientists and analysts to use powerful supercomputers or computer clusters to store, manage, and analyze these data. These clusters typically run on Linux, which requires some programming skills and insights into suitable software packages. Our course will introduce you to programming in a Linux environment, teach you how to efficiently manage very large datasets (e.g. using sed, awk, and grep commands) and create simple shell scripts to analyze your data (e.g. using a Linux version of the freely available statistics program R). You will also learn how to visualize your data and results in customized plots and figures. These skil…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Database management, Data management, Big Data, Linux en Business intelligence.

The growing availability of extremely large datasets requires scientists and analysts to use powerful supercomputers or computer clusters to store, manage, and analyze these data. These clusters typically run on Linux, which requires some programming skills and insights into suitable software packages. Our course will introduce you to programming in a Linux environment, teach you how to efficiently manage very large datasets (e.g. using sed, awk, and grep commands) and create simple shell scripts to analyze your data (e.g. using a Linux version of the freely available statistics program R). You will also learn how to visualize your data and results in customized plots and figures. These skills are extremely valuable for scientists from all disciplines as well as for business practitioners (e.g. consultants or financial analysts) who are planning to work with big data.

The format of the course is three hour lectures in the morning, followed by two hours of supervised work in computer tutorials in the afternoon. Both the lectures and tutorials will be held in a computer room. The lectures will be interactive, with short examples that allow students to apply the introduced concepts. In the tutorials, students will get more hands-on training in a supervised environment with exercises covering the day’s topics, and they will have the opportunity to work on the assignments. The computer room will stay open to students for self-study after the tutorials.  

Students are not required to bring their own laptops, but they are allowed to do so if they wish to work on their own computers. 

By the end of this course, the student should understand and feel comfortable with:

  • Basic Linux programming
  • The Unix philosophy and environment; files, processes, pipes, filters and basic utilities
  • Login and logout procedures
  • File transfer between systems
  • Text file manipulation with sed, awk, cut, paste, cat, etc.
  • Basic text editing using the vim editor
  • Automation through functions, control structures and shell scripts
  • Version control with Git
  • Working with R through the UNIX command line 
  • Plotting in R

Blijf op de hoogte van nieuwe ervaringen

Er zijn nog geen ervaringen.

Deel je ervaring

Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

Aanhef
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)