Large Language Models

Tijdsduur
Locatie
Op locatie, Online
Startdatum en plaats

Large Language Models

SpiralTrain
Logo van SpiralTrain
Opleiderscore: starstarstarstarstar_half 8,5 SpiralTrain heeft een gemiddelde beoordeling van 8,5 (uit 50 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
placeAmsterdam
5 mrt. 2026 tot 6 mrt. 2026
Toon rooster
event 5 maart 2026, 09:30-16:30, Amsterdam, Dag 1
event 6 maart 2026, 09:30-16:30, Amsterdam, Dag 2
placeEindhoven
5 mrt. 2026 tot 6 mrt. 2026
Toon rooster
event 5 maart 2026, 09:30-16:30, Eindhoven, Dag 1
event 6 maart 2026, 09:30-16:30, Eindhoven, Dag 2
placeHouten
5 mrt. 2026 tot 6 mrt. 2026
Toon rooster
event 5 maart 2026, 09:30-16:30, Houten, Dag 1
event 6 maart 2026, 09:30-16:30, Houten, Dag 2
computer Online: Online
5 mrt. 2026 tot 6 mrt. 2026
Toon rooster
event 5 maart 2026, 09:30-16:30, Online, Dag 1
event 6 maart 2026, 09:30-16:30, Online, Dag 2
placeRotterdam
5 mrt. 2026 tot 6 mrt. 2026
Toon rooster
event 5 maart 2026, 09:30-16:30, Rotterdam, Dag 1
event 6 maart 2026, 09:30-16:30, Rotterdam, Dag 2
placeZwolle
5 mrt. 2026 tot 6 mrt. 2026
Toon rooster
event 5 maart 2026, 09:30-16:30, Zwolle, Dag 1
event 6 maart 2026, 09:30-16:30, Zwolle, Dag 2
placeAmsterdam
7 mei. 2026 tot 8 mei. 2026
Toon rooster
event 7 mei 2026, 09:30-16:30, Amsterdam, Dag 1
event 8 mei 2026, 09:30-16:30, Amsterdam, Dag 2
placeEindhoven
7 mei. 2026 tot 8 mei. 2026
Toon rooster
event 7 mei 2026, 09:30-16:30, Eindhoven, Dag 1
event 8 mei 2026, 09:30-16:30, Eindhoven, Dag 2
placeHouten
7 mei. 2026 tot 8 mei. 2026
Toon rooster
event 7 mei 2026, 09:30-16:30, Houten, Dag 1
event 8 mei 2026, 09:30-16:30, Houten, Dag 2
computer Online: Online
7 mei. 2026 tot 8 mei. 2026
Toon rooster
event 7 mei 2026, 09:30-16:30, Online, Dag 1
event 8 mei 2026, 09:30-16:30, Online, Dag 2
placeRotterdam
7 mei. 2026 tot 8 mei. 2026
Toon rooster
event 7 mei 2026, 09:30-16:30, Rotterdam, Dag 1
event 8 mei 2026, 09:30-16:30, Rotterdam, Dag 2
placeZwolle
7 mei. 2026 tot 8 mei. 2026
Toon rooster
event 7 mei 2026, 09:30-16:30, Zwolle, Dag 1
event 8 mei 2026, 09:30-16:30, Zwolle, Dag 2
placeAmsterdam
9 jul. 2026 tot 10 jul. 2026
Toon rooster
event 9 juli 2026, 09:30-16:30, Amsterdam, Dag 1
event 10 juli 2026, 09:30-16:30, Amsterdam, Dag 2
placeEindhoven
9 jul. 2026 tot 10 jul. 2026
Toon rooster
event 9 juli 2026, 09:30-16:30, Eindhoven, Dag 1
event 10 juli 2026, 09:30-16:30, Eindhoven, Dag 2
placeHouten
9 jul. 2026 tot 10 jul. 2026
Toon rooster
event 9 juli 2026, 09:30-16:30, Houten, Dag 1
event 10 juli 2026, 09:30-16:30, Houten, Dag 2
computer Online: Online
9 jul. 2026 tot 10 jul. 2026
Toon rooster
event 9 juli 2026, 09:30-16:30, Online, Dag 1
event 10 juli 2026, 09:30-16:30, Online, Dag 2
placeRotterdam
9 jul. 2026 tot 10 jul. 2026
Toon rooster
event 9 juli 2026, 09:30-16:30, Rotterdam, Dag 1
event 10 juli 2026, 09:30-16:30, Rotterdam, Dag 2
placeZwolle
9 jul. 2026 tot 10 jul. 2026
Toon rooster
event 9 juli 2026, 09:30-16:30, Zwolle, Dag 1
event 10 juli 2026, 09:30-16:30, Zwolle, Dag 2
placeAmsterdam
3 sep. 2026 tot 4 sep. 2026
Toon rooster
event 3 september 2026, 09:30-16:30, Amsterdam, Dag 1
event 4 september 2026, 09:30-16:30, Amsterdam, Dag 2
placeEindhoven
3 sep. 2026 tot 4 sep. 2026
Toon rooster
event 3 september 2026, 09:30-16:30, Eindhoven, Dag 1
event 4 september 2026, 09:30-16:30, Eindhoven, Dag 2
Beschrijving
The course Large Language Models from SpiralTrain provides a comprehensive understanding of large language models (LLMs), from foundational architectures like transformers to advanced topics like fine

Intro to LLMs

This module introduces LLMs and their evolution, from GPT to BERT and T5. It explains transformers, attention, and tokenization. Participants explore training objectives, scaling laws, and key differences between pretraining and fine-tuning. Open source vs proprietary models are also compared.

Model Architectures

Participants learn LLM types: decoders, encoder-decoders, and key models like GPT, LLaMA, and PaLM. It covers training pipelines, optimizers, and precision formats. Tools…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: .

The course Large Language Models from SpiralTrain provides a comprehensive understanding of large language models (LLMs), from foundational architectures like transformers to advanced topics like fine

Intro to LLMs

This module introduces LLMs and their evolution, from GPT to BERT and T5. It explains transformers, attention, and tokenization. Participants explore training objectives, scaling laws, and key differences between pretraining and fine-tuning. Open source vs proprietary models are also compared.

Model Architectures

Participants learn LLM types: decoders, encoder-decoders, and key models like GPT, LLaMA, and PaLM. It covers training pipelines, optimizers, and precision formats. Tools like Hugging Face and Deepspeed are introduced, plus tuning techniques like LoRA and in-context learning.

Training LLMs

This module focuses on preparing and fine-tuning data for LLMs. It includes tokenizer setup, adapters, SFT, and avoiding overfitting. Participants learn metrics for evaluation, model alignment, and benchmarking. Hugging Face tools and best practices are emphasized.

LLM Deployment

Participants learn how to serve and optimize LLMs for production. Topics include quantization, distillation, and cloud deployment (AWS, Azure, GCP). Also covered are LangChain integration, embeddings, caching, and reducing inference costs with scalable strategies.

Safety and Bias

Focus is on LLM safety: identifying and reducing bias, model auditing, and prompt attacks. Topics include explainability, red teaming, and moderation. Legal and privacy concerns are discussed, with strategies for responsible LLM deployment.

LLM Use Cases

The course ends with real-world LLM applications in code, legal, health, and education. Use cases include RAG systems, agents, and plugins. Participants explore enterprise integration, model evaluation, and research trends shaping the future of LLMs.

Audience course Large Language Models

The course Large Language Models is intended for software engineers, data scientists, and technical professionals who want to work with large language models (LLMs).

Prerequisites Large Language Models Course

To participate in the course, a basic understanding of Python and machine learning is required. Familiarity with neural networks or natural language processing is useful.

Realization training Large Language Models

The course is led by an experienced trainer and includes a mix of theory and hands-on exercises. Demonstrations and case studies involving LLMs are used to illustrate key concepts.

Large Language Models Certificate

After successfully completing the course, attendants receive a certificate of participation in the course Large Language Models.

Modules

Module 1: Intro to LLMs

  • What are LLMs?
  • Transformer architecture
  • Training Objectives (causal, masked)
  • Evolution of LLMs (GPT, BERT, T5)
  • Open Source vs Proprietary LLMs
  • Tokenization and Vocabulary
  • Attention Mechanism
  • Model Scaling Laws
  • Transfer Learning
  • Pretraining vs Fine-Tuning

Module 2: Model Architectures

  • Decoder vs Encoder-Decoder Models
  • GPT, LLaMA, T5, and PaLM
  • Training Pipeline Overview
  • Optimizers (Adam, Adafactor)
  • Precision (FP32, FP16, quantization)
  • Transformers (HF), Megatron, Deepspeed
  • Parameter vs Instruction Suning
  • LoRA and QLoRA
  • In-context Learning
  • Reinforcement Learning with HF

Module 3: Training LLMs

  • Dataset Creation and Curation
  • Tokenizer Customization
  • Data Preprocessing
  • Fine-Tuning with Hugging Face
  • SFT (Supervised Fine-Tuning)
  • Adapters and LoRA
  • Evaluation Metrics
  • Avoiding Overfitting
  • Model Alignment
  • Model Evaluation and Benchmarking

Module 4: LLM Deployment

  • Inference Optimization
  • Model Distillation
  • Quantization Techniques
  • Hosting on AWS, GCP, Azure
  • Using Model Gateways
  • LangChain and Semantic Search
  • Vector Stores and Embeddings
  • Caching Responses
  • Load Balancing
  • Cost Optimization Strategies

Module 5: Safety and Bias

  • Understanding Model Biases
  • Mitigation Strategies
  • Model Auditing
  • Adversarial Prompts
  • User Privacy
  • Filtering and Moderation
  • Red Teaming
  • Explainability in LLMs
  • Interpreting Outputs
  • Regulatory and Legal Issues

Module 6: LLM Use Cases

  • Coding Assistants
  • AI for Legal and Finance
  • Education and Learning
  • Health Care and Biotech
  • Chatbots and Agents
  • RAG Systems
  • Tool Use and Plugins
  • Enterprise Use of LLMs
  • Evaluating New Models
  • Future Directions LLM Research

Waarom SpiralTrain

SpiralTrain is specialist op het gebied van software development trainingen. Wie bieden zowel trainingen aan voor beginnende programmeurs die zich de basis van talen en tools eigen willen maken als ook trainingen voor ervaren software professionals die zich willen bekwamen in de nieuwste versie van een taal of een framework.

Onze trainingkenmerken zich door :

• Klassikale of online open roostertrainingen en andere trainingsvormen
• Eenduidige en scherpe cursusprijzen, zonder extra kosten
• Veel trainingen met een doorlopende case study
• Trainingen die gericht zijn op certificering

Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
infoEr is een telefoonnummer vereist om deze informatieaanvraag in behandeling te nemen. (optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)