Machine Learning with PyTorch
placeAmsterdam 18 feb. 2026 tot 20 feb. 2026Toon rooster event 18 februari 2026, 09:30-16:30, Amsterdam, Dag 1 event 19 februari 2026, 09:30-16:30, Amsterdam, Dag 2 event 20 februari 2026, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 18 feb. 2026 tot 20 feb. 2026Toon rooster event 18 februari 2026, 09:30-16:30, Eindhoven, Dag 1 event 19 februari 2026, 09:30-16:30, Eindhoven, Dag 2 event 20 februari 2026, 09:30-16:30, Eindhoven, Dag 3 |
placeHouten 18 feb. 2026 tot 20 feb. 2026Toon rooster event 18 februari 2026, 09:30-16:30, Houten, Dag 1 event 19 februari 2026, 09:30-16:30, Houten, Dag 2 event 20 februari 2026, 09:30-16:30, Houten, Dag 3 |
computer Online: Online 18 feb. 2026 tot 20 feb. 2026Toon rooster event 18 februari 2026, 09:30-16:30, Online, Dag 1 event 19 februari 2026, 09:30-16:30, Online, Dag 2 event 20 februari 2026, 09:30-16:30, Online, Dag 3 |
placeRotterdam 18 feb. 2026 tot 20 feb. 2026Toon rooster event 18 februari 2026, 09:30-16:30, Rotterdam, Dag 1 event 19 februari 2026, 09:30-16:30, Rotterdam, Dag 2 event 20 februari 2026, 09:30-16:30, Rotterdam, Dag 3 |
placeZwolle 18 feb. 2026 tot 20 feb. 2026Toon rooster event 18 februari 2026, 09:30-16:30, Zwolle, Dag 1 event 19 februari 2026, 09:30-16:30, Zwolle, Dag 2 event 20 februari 2026, 09:30-16:30, Zwolle, Dag 3 |
placeAmsterdam 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Amsterdam, Dag 1 event 14 april 2026, 09:30-16:30, Amsterdam, Dag 2 event 15 april 2026, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Eindhoven, Dag 1 event 14 april 2026, 09:30-16:30, Eindhoven, Dag 2 event 15 april 2026, 09:30-16:30, Eindhoven, Dag 3 |
placeHouten 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Houten, Dag 1 event 14 april 2026, 09:30-16:30, Houten, Dag 2 event 15 april 2026, 09:30-16:30, Houten, Dag 3 |
computer Online: Online 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Online, Dag 1 event 14 april 2026, 09:30-16:30, Online, Dag 2 event 15 april 2026, 09:30-16:30, Online, Dag 3 |
placeRotterdam 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Rotterdam, Dag 1 event 14 april 2026, 09:30-16:30, Rotterdam, Dag 2 event 15 april 2026, 09:30-16:30, Rotterdam, Dag 3 |
placeZwolle 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:30-16:30, Zwolle, Dag 1 event 14 april 2026, 09:30-16:30, Zwolle, Dag 2 event 15 april 2026, 09:30-16:30, Zwolle, Dag 3 |
placeAmsterdam 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Amsterdam, Dag 1 event 16 juni 2026, 09:30-16:30, Amsterdam, Dag 2 event 17 juni 2026, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Eindhoven, Dag 1 event 16 juni 2026, 09:30-16:30, Eindhoven, Dag 2 event 17 juni 2026, 09:30-16:30, Eindhoven, Dag 3 |
placeHouten 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Houten, Dag 1 event 16 juni 2026, 09:30-16:30, Houten, Dag 2 event 17 juni 2026, 09:30-16:30, Houten, Dag 3 |
computer Online: Online 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Online, Dag 1 event 16 juni 2026, 09:30-16:30, Online, Dag 2 event 17 juni 2026, 09:30-16:30, Online, Dag 3 |
placeRotterdam 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Rotterdam, Dag 1 event 16 juni 2026, 09:30-16:30, Rotterdam, Dag 2 event 17 juni 2026, 09:30-16:30, Rotterdam, Dag 3 |
placeZwolle 15 jun. 2026 tot 17 jun. 2026Toon rooster event 15 juni 2026, 09:30-16:30, Zwolle, Dag 1 event 16 juni 2026, 09:30-16:30, Zwolle, Dag 2 event 17 juni 2026, 09:30-16:30, Zwolle, Dag 3 |
placeAmsterdam 17 aug. 2026 tot 19 aug. 2026Toon rooster event 17 augustus 2026, 09:30-16:30, Amsterdam, Dag 1 event 18 augustus 2026, 09:30-16:30, Amsterdam, Dag 2 event 19 augustus 2026, 09:30-16:30, Amsterdam, Dag 3 |
placeEindhoven 17 aug. 2026 tot 19 aug. 2026Toon rooster event 17 augustus 2026, 09:30-16:30, Eindhoven, Dag 1 event 18 augustus 2026, 09:30-16:30, Eindhoven, Dag 2 event 19 augustus 2026, 09:30-16:30, Eindhoven, Dag 3 |
Intro PyTorch
The course Machine Learning with PyTorch starts with an introduction to PyTorch, covering the basic principles of tensors, autograd and the PyTorch ecosystem.
Linear Regression
Subsequently linear regression in PyTorch for predicting results is discussed, including optimization with gradient descent, loss functions, regularization techniques and evaluation metrics.
Neural Networks
Then neural networks with PyTorch are treated, where activation functions, backpropagation and optimi…

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Intro PyTorch
The course Machine Learning with PyTorch starts with an introduction to PyTorch, covering the basic principles of tensors, autograd and the PyTorch ecosystem.
Linear Regression
Subsequently linear regression in PyTorch for predicting results is discussed, including optimization with gradient descent, loss functions, regularization techniques and evaluation metrics.
Neural Networks
Then neural networks with PyTorch are treated, where activation functions, backpropagation and optimization algorithms are explained.
Classification
Classification tasks in PyTorch are also covered with logistic regression and cross entropy losses. Both binary and multi-class classification are treated.
Model Building
And model building is also on the program of the course Machine Learning with PyTorch. Here it is explained how more complex models can be based on fundamental building blocks, using feature engineering, categorical variables and hyperparameter tuning.
Natural Language Processing
Then Natural Language Processing with PyTorch is explained. The use of text classification, named entity recognition and sequence to sequence models for machine translations is covered.
Reinforcement Learning
And reinforcement learning with PyTorch is also on the program. Among others, Markov Decision Processes, Q-Learning, Policy Gradients and Actor-Critic Methods are discussed then.
Image Processing
The use of PyTorch for image processing is also covered, including classification, object detection and semantic segmentation.
Model Optimization
Finally attention is paid to optimizing machine learning models in PyTorch with the goal to improve performance and efficiency. Techniques such as batch normalization, hyperparameter tuning and pruning are treated then.
Audience Course Machine Learning with PyTorch
The course Machine Learning with PyTorch is intended for data scientists who want to use Python and the Torch machine learning library to create models and make predictions.
Prerequisites training Machine Learning with PyTorch
To participate in this course, knowledge of and experience with Python is required and knowledge of data analysis libraries such as Numpy and Pandas is desirable.
Realization course Machine Learning with PyTorch
The theory is discussed through presentations. Illustrative demos clarify the concepts. The theory is interchanged with exercises.
Certificate course Machine Learning with PyTorch
After successfully completing the course, attendants will receive a certificate of participation in Machine Learning with PyTorch.
Modules
Module 1 : Intro PyTorch
- Machine Learning Intro
- Overview of PyTorch
- Installing Anaconda
- Setting Up PyTorch
- PyTorch Tensors
- Tensor Operations
- Simple Neural Networks
- Datasets and DataLoaders
- Fundamentals of Autograd
- Model Evaluation Metrics
Module 2 : Linear Regression
- Linear Regression in PyTorch
- Gradient Descent Optimization
- Mean Squared Error
- Regularization Techniques
- Feature Scaling
- Feature Normalization
- Categorical Features
- Model Evaluation Metrics
- RMSE, MAE, R-squared
- Hyperparameter Tuning
Module 3 : Neural Networks
- Neural Networks Intro
- Building NN with PyTorch
- Multiple Layers of Arrays
- Convolutional Neural Networks
- Activation Functions
- Loss Functions
- Backpropagation
- Gradient Descent
- Stochastic Gradient Descent
- Recurrent Neural Networks
Module 4 : Classification
- Logistic Regression
- Binary Classification
- Multi-class Classification
- Cross-Entropy
- Confusion Matrix
- Precision and Recall
- ROC Curve
- Handling Imbalanced Data
- Regularization Techniques
- Hyperparameter Tuning
Module 5 : Model Building
- PyTorch Models
- Model Components
- Parameters
- Common Layer Types
- Linear Layers
- Convolutional Layers
- Input Channels
- Recurrent Layers
- Transformers
- Data Manipulation Layers
Module 6 : Natural Language Processing
- NLP Overview
- Text Preprocessing
- Tokenization
- Stopword Removal
- Spam Detection
- Bag-of-Words
- Word Embedding
- Sentiment Analysis
- Attention Mechanisms
- Transformer Models
Module 7 : Reinforcement Learning
- Intro Reinforcement Learning
- Markov Decision Processes
- Q-Learning
- Deep Q-Networks
- Policy Gradient Methods
- Actor-Critic Methods
- Proximal Policy Optimization
- Deep Policy Gradient
Module 8 : Image Processing
- Image Preprocessing
- Resizing and Normalization
- Convolution Layer
- Convolutional Neural Networks
- Object Detection
- Transfer Learning
- Semantic Segmentation
- Image Captioning
Module 9 : Model Optimization
- Profiling PyTorch
- Profiler With TensorBoard
- Hyperparameter tuning
- Parametrizations
- Pruning
- torch.compile
- Dynamic Quantization
- High-Performance Transformers
Waarom SpiralTrain
SpiralTrain is specialist op het gebied van software development trainingen. Wie bieden zowel trainingen aan voor beginnende programmeurs die zich de basis van talen en tools eigen willen maken als ook trainingen voor ervaren software professionals die zich willen bekwamen in de nieuwste versie van een taal of een framework.
Onze trainingkenmerken zich door :
• Klassikale of online open roostertrainingen en andere
trainingsvormen
• Eenduidige en scherpe cursusprijzen, zonder extra kosten
• Veel trainingen met een doorlopende case study
• Trainingen die gericht zijn op certificering
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

