Machine Learning with PyTorch

Tijdsduur
Locatie
Op locatie, Online
Startdatum en plaats

Machine Learning with PyTorch

SpiralTrain
Logo van SpiralTrain
Opleiderscore: starstarstarstarstar_half 8,5 SpiralTrain heeft een gemiddelde beoordeling van 8,5 (uit 50 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
placeAmsterdam
18 feb. 2026 tot 20 feb. 2026
Toon rooster
event 18 februari 2026, 09:30-16:30, Amsterdam, Dag 1
event 19 februari 2026, 09:30-16:30, Amsterdam, Dag 2
event 20 februari 2026, 09:30-16:30, Amsterdam, Dag 3
placeEindhoven
18 feb. 2026 tot 20 feb. 2026
Toon rooster
event 18 februari 2026, 09:30-16:30, Eindhoven, Dag 1
event 19 februari 2026, 09:30-16:30, Eindhoven, Dag 2
event 20 februari 2026, 09:30-16:30, Eindhoven, Dag 3
placeHouten
18 feb. 2026 tot 20 feb. 2026
Toon rooster
event 18 februari 2026, 09:30-16:30, Houten, Dag 1
event 19 februari 2026, 09:30-16:30, Houten, Dag 2
event 20 februari 2026, 09:30-16:30, Houten, Dag 3
computer Online: Online
18 feb. 2026 tot 20 feb. 2026
Toon rooster
event 18 februari 2026, 09:30-16:30, Online, Dag 1
event 19 februari 2026, 09:30-16:30, Online, Dag 2
event 20 februari 2026, 09:30-16:30, Online, Dag 3
placeRotterdam
18 feb. 2026 tot 20 feb. 2026
Toon rooster
event 18 februari 2026, 09:30-16:30, Rotterdam, Dag 1
event 19 februari 2026, 09:30-16:30, Rotterdam, Dag 2
event 20 februari 2026, 09:30-16:30, Rotterdam, Dag 3
placeZwolle
18 feb. 2026 tot 20 feb. 2026
Toon rooster
event 18 februari 2026, 09:30-16:30, Zwolle, Dag 1
event 19 februari 2026, 09:30-16:30, Zwolle, Dag 2
event 20 februari 2026, 09:30-16:30, Zwolle, Dag 3
placeAmsterdam
13 apr. 2026 tot 15 apr. 2026
Toon rooster
event 13 april 2026, 09:30-16:30, Amsterdam, Dag 1
event 14 april 2026, 09:30-16:30, Amsterdam, Dag 2
event 15 april 2026, 09:30-16:30, Amsterdam, Dag 3
placeEindhoven
13 apr. 2026 tot 15 apr. 2026
Toon rooster
event 13 april 2026, 09:30-16:30, Eindhoven, Dag 1
event 14 april 2026, 09:30-16:30, Eindhoven, Dag 2
event 15 april 2026, 09:30-16:30, Eindhoven, Dag 3
placeHouten
13 apr. 2026 tot 15 apr. 2026
Toon rooster
event 13 april 2026, 09:30-16:30, Houten, Dag 1
event 14 april 2026, 09:30-16:30, Houten, Dag 2
event 15 april 2026, 09:30-16:30, Houten, Dag 3
computer Online: Online
13 apr. 2026 tot 15 apr. 2026
Toon rooster
event 13 april 2026, 09:30-16:30, Online, Dag 1
event 14 april 2026, 09:30-16:30, Online, Dag 2
event 15 april 2026, 09:30-16:30, Online, Dag 3
placeRotterdam
13 apr. 2026 tot 15 apr. 2026
Toon rooster
event 13 april 2026, 09:30-16:30, Rotterdam, Dag 1
event 14 april 2026, 09:30-16:30, Rotterdam, Dag 2
event 15 april 2026, 09:30-16:30, Rotterdam, Dag 3
placeZwolle
13 apr. 2026 tot 15 apr. 2026
Toon rooster
event 13 april 2026, 09:30-16:30, Zwolle, Dag 1
event 14 april 2026, 09:30-16:30, Zwolle, Dag 2
event 15 april 2026, 09:30-16:30, Zwolle, Dag 3
placeAmsterdam
15 jun. 2026 tot 17 jun. 2026
Toon rooster
event 15 juni 2026, 09:30-16:30, Amsterdam, Dag 1
event 16 juni 2026, 09:30-16:30, Amsterdam, Dag 2
event 17 juni 2026, 09:30-16:30, Amsterdam, Dag 3
placeEindhoven
15 jun. 2026 tot 17 jun. 2026
Toon rooster
event 15 juni 2026, 09:30-16:30, Eindhoven, Dag 1
event 16 juni 2026, 09:30-16:30, Eindhoven, Dag 2
event 17 juni 2026, 09:30-16:30, Eindhoven, Dag 3
placeHouten
15 jun. 2026 tot 17 jun. 2026
Toon rooster
event 15 juni 2026, 09:30-16:30, Houten, Dag 1
event 16 juni 2026, 09:30-16:30, Houten, Dag 2
event 17 juni 2026, 09:30-16:30, Houten, Dag 3
computer Online: Online
15 jun. 2026 tot 17 jun. 2026
Toon rooster
event 15 juni 2026, 09:30-16:30, Online, Dag 1
event 16 juni 2026, 09:30-16:30, Online, Dag 2
event 17 juni 2026, 09:30-16:30, Online, Dag 3
placeRotterdam
15 jun. 2026 tot 17 jun. 2026
Toon rooster
event 15 juni 2026, 09:30-16:30, Rotterdam, Dag 1
event 16 juni 2026, 09:30-16:30, Rotterdam, Dag 2
event 17 juni 2026, 09:30-16:30, Rotterdam, Dag 3
placeZwolle
15 jun. 2026 tot 17 jun. 2026
Toon rooster
event 15 juni 2026, 09:30-16:30, Zwolle, Dag 1
event 16 juni 2026, 09:30-16:30, Zwolle, Dag 2
event 17 juni 2026, 09:30-16:30, Zwolle, Dag 3
placeAmsterdam
17 aug. 2026 tot 19 aug. 2026
Toon rooster
event 17 augustus 2026, 09:30-16:30, Amsterdam, Dag 1
event 18 augustus 2026, 09:30-16:30, Amsterdam, Dag 2
event 19 augustus 2026, 09:30-16:30, Amsterdam, Dag 3
placeEindhoven
17 aug. 2026 tot 19 aug. 2026
Toon rooster
event 17 augustus 2026, 09:30-16:30, Eindhoven, Dag 1
event 18 augustus 2026, 09:30-16:30, Eindhoven, Dag 2
event 19 augustus 2026, 09:30-16:30, Eindhoven, Dag 3
Beschrijving
In the course Machine Learning with PyTorch from SpiralTrain data scientists, data engineers and aspiring machine learning practitioners learn how to harness the power of the PyTorch framework to crea

Intro PyTorch

The course Machine Learning with PyTorch starts with an introduction to PyTorch, covering the basic principles of tensors, autograd and the PyTorch ecosystem.

Linear Regression

Subsequently linear regression in PyTorch for predicting results is discussed, including optimization with gradient descent, loss functions, regularization techniques and evaluation metrics.

Neural Networks

Then neural networks with PyTorch are treated, where activation functions, backpropagation and optimi…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Machine learning, Microsoft SQL Server, Big Data, MySQL en Datavisualisatie.

In the course Machine Learning with PyTorch from SpiralTrain data scientists, data engineers and aspiring machine learning practitioners learn how to harness the power of the PyTorch framework to crea

Intro PyTorch

The course Machine Learning with PyTorch starts with an introduction to PyTorch, covering the basic principles of tensors, autograd and the PyTorch ecosystem.

Linear Regression

Subsequently linear regression in PyTorch for predicting results is discussed, including optimization with gradient descent, loss functions, regularization techniques and evaluation metrics.

Neural Networks

Then neural networks with PyTorch are treated, where activation functions, backpropagation and optimization algorithms are explained.

Classification

Classification tasks in PyTorch are also covered with logistic regression and cross entropy losses. Both binary and multi-class classification are treated.

Model Building

And model building is also on the program of the course Machine Learning with PyTorch. Here it is explained how more complex models can be based on fundamental building blocks, using feature engineering, categorical variables and hyperparameter tuning.

Natural Language Processing

Then Natural Language Processing with PyTorch is explained. The use of text classification, named entity recognition and sequence to sequence models for machine translations is covered.

Reinforcement Learning

And reinforcement learning with PyTorch is also on the program. Among others, Markov Decision Processes, Q-Learning, Policy Gradients and Actor-Critic Methods are discussed then.

Image Processing

The use of PyTorch for image processing is also covered, including classification, object detection and semantic segmentation.

Model Optimization

Finally attention is paid to optimizing machine learning models in PyTorch with the goal to improve performance and efficiency. Techniques such as batch normalization, hyperparameter tuning and pruning are treated then.

Audience Course Machine Learning with PyTorch

The course Machine Learning with PyTorch is intended for data scientists who want to use Python and the Torch machine learning library to create models and make predictions.

Prerequisites training Machine Learning with PyTorch

To participate in this course, knowledge of and experience with Python is required and knowledge of data analysis libraries such as Numpy and Pandas is desirable.

Realization course Machine Learning with PyTorch

The theory is discussed through presentations. Illustrative demos clarify the concepts. The theory is interchanged with exercises.

Certificate course Machine Learning with PyTorch

After successfully completing the course, attendants will receive a certificate of participation in Machine Learning with PyTorch.

Modules

Module 1 : Intro PyTorch

  • Machine Learning Intro
  • Overview of PyTorch
  • Installing Anaconda
  • Setting Up PyTorch
  • PyTorch Tensors
  • Tensor Operations
  • Simple Neural Networks
  • Datasets and DataLoaders
  • Fundamentals of Autograd
  • Model Evaluation Metrics

Module 2 : Linear Regression

  • Linear Regression in PyTorch
  • Gradient Descent Optimization
  • Mean Squared Error
  • Regularization Techniques
  • Feature Scaling
  • Feature Normalization
  • Categorical Features
  • Model Evaluation Metrics
  • RMSE, MAE, R-squared
  • Hyperparameter Tuning

Module 3 : Neural Networks

  • Neural Networks Intro
  • Building NN with PyTorch
  • Multiple Layers of Arrays
  • Convolutional Neural Networks
  • Activation Functions
  • Loss Functions
  • Backpropagation
  • Gradient Descent
  • Stochastic Gradient Descent
  • Recurrent Neural Networks

Module 4 : Classification

  • Logistic Regression
  • Binary Classification
  • Multi-class Classification
  • Cross-Entropy
  • Confusion Matrix
  • Precision and Recall
  • ROC Curve
  • Handling Imbalanced Data
  • Regularization Techniques
  • Hyperparameter Tuning

Module 5 : Model Building

  • PyTorch Models
  • Model Components
  • Parameters
  • Common Layer Types
  • Linear Layers
  • Convolutional Layers
  • Input Channels
  • Recurrent Layers
  • Transformers
  • Data Manipulation Layers

Module 6 : Natural Language Processing

  • NLP Overview
  • Text Preprocessing
  • Tokenization
  • Stopword Removal
  • Spam Detection
  • Bag-of-Words
  • Word Embedding
  • Sentiment Analysis
  • Attention Mechanisms
  • Transformer Models

Module 7 : Reinforcement Learning

  • Intro Reinforcement Learning
  • Markov Decision Processes
  • Q-Learning
  • Deep Q-Networks
  • Policy Gradient Methods
  • Actor-Critic Methods
  • Proximal Policy Optimization
  • Deep Policy Gradient

Module 8 : Image Processing

  • Image Preprocessing
  • Resizing and Normalization
  • Convolution Layer
  • Convolutional Neural Networks
  • Object Detection
  • Transfer Learning
  • Semantic Segmentation
  • Image Captioning

Module 9 : Model Optimization

  • Profiling PyTorch
  • Profiler With TensorBoard
  • Hyperparameter tuning
  • Parametrizations
  • Pruning
  • torch.compile
  • Dynamic Quantization
  • High-Performance Transformers

Waarom SpiralTrain

SpiralTrain is specialist op het gebied van software development trainingen. Wie bieden zowel trainingen aan voor beginnende programmeurs die zich de basis van talen en tools eigen willen maken als ook trainingen voor ervaren software professionals die zich willen bekwamen in de nieuwste versie van een taal of een framework.

Onze trainingkenmerken zich door :

• Klassikale of online open roostertrainingen en andere trainingsvormen
• Eenduidige en scherpe cursusprijzen, zonder extra kosten
• Veel trainingen met een doorlopende case study
• Trainingen die gericht zijn op certificering

Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
infoEr is een telefoonnummer vereist om deze informatieaanvraag in behandeling te nemen. (optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)