AI+ Medical Assistant™ eLearning

Type product

AI+ Medical Assistant™ eLearning

Train IT Now B.V.
Logo van Train IT Now B.V.

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Beschrijving

Revolutionize Healthcare Support with AI-Powered Medical Assistance


* Patient Interaction Excellence: Learn how AI enhances patient communication, appointment scheduling, and follow-up care to improve the patient experience.
* Clinical Workflow Efficiency: Master AI tools for streamlining patient intake, medical record management, and lab result analysis to optimize clinical operations.
* Data-Driven Decision Support: Gain expertise in using AI to assist healthcare providers with accurate diagnostics, treatment suggestions, and patient monitoring.
* Enhanced Medical Administration: Prepare to support healthcare teams with AI-driven administrative tasks, reducing errors, improving accuracy, …

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: .

Revolutionize Healthcare Support with AI-Powered Medical Assistance


* Patient Interaction Excellence: Learn how AI enhances patient communication, appointment scheduling, and follow-up care to improve the patient experience.
* Clinical Workflow Efficiency: Master AI tools for streamlining patient intake, medical record management, and lab result analysis to optimize clinical operations.
* Data-Driven Decision Support: Gain expertise in using AI to assist healthcare providers with accurate diagnostics, treatment suggestions, and patient monitoring.
* Enhanced Medical Administration: Prepare to support healthcare teams with AI-driven administrative tasks, reducing errors, improving accuracy, and enabling faster decision-making.

Module 1: Fundamentals of AI for Medical Assistants

* 1.1 Understanding AI and Its Healthcare Applications
* 1.2 The Role of AI in Medical Assistance
* 1.3 Case Studies
* 1.4 Hands-on Session: Functionality Survey and Stepwise Analysis of the Eka.care Patient-Side Application Module 2: Data Literacy for Medical Assistants

* 2.1 Healthcare Data Types and Management
* 2.2 Using Data Effectively in AI
* 2.3 Case Studies
* 2.4 Hands-On Session: Structured vs. Unstructured Data in Healthcare: A Practical Study Using Eka.Care Patient Health Record System Module 3: AI in Patient Care Optimization

* 3.1 Enhancing Patient Interactions with AI
* 3.2 Predictive Analytics and Workflow Management
* 3.3 Case Studies
* 3.4 Hands-On Session: Eka.care in Action: Appointment Management, Smart Reminders & Tele-Consult Dashboards Module 4: NLP and Generative AI in Medical Documentation

* 4.1 Foundations of NLP for Medical Assistants
* 4.2 Practical Applications and Risks
* 4.3 Case Studies
* 4.4 Hands-On Simulation Exercise
* 4.5 Hands-On Session: Automating Clinical Documentation Using Eka.care: Notes, Summaries, and Communication Workflows Module 5: AI in Diagnostics and Screening

* 5.1 Diagnostic Support Tools
* 5.2 Real-World Applications and Simulation
* 5.3 Use Cases
* 5.4 Hands-On: AI-Powered Detection of Common Health Conditions: Review and Analysis of AI-Suggested Diagnostic Insights using Eka Care Module 6: Ethics, Bias, and Regulation in AI for Healthcare

* 6.1 Recognizing and Addressing Bias in AI
* 6.2 Legal, Ethical, and Compliance Frameworks
* 6.3 Hands-On Exercise: Analyzing and Visualizing Bias in Artificial Intelligence Systems — Exploring Racial, Socioeconomic, and Demographic Disparities using Google’s What-If Tool Module 7: Evaluating and Implementing AI Tools

* 7.1 Selecting and Planning for AI Adoption
* 7.2 Best Practices and Stakeholder Engagement
* 7.3 Case Study: Procurement and Early Deployment of AI Tools for Chest Diagnostics in a National Health Service Setting
* 7.4 Hands-On Simulation Exercise: Recognizing Red Flags in Vendor Solutions for AI in Medical Assistant
* 7.5 Hands-On Exercises: Evaluating the Relevance and Effectiveness of AI Models using the Zoho Analytics Module 8: Cybersecurity and Emerging Trends in AI

* 8.1 Cybersecurity Risks and Protection
* 8.2 Future Trends and Preparing for Innovation
* 8.3 Case Studies: EY’s Strategic Transformation: Adapting to Emerging AI Technologies
* 8.4 Hands-On Exercises: Common Cybersecurity Threats in AI-Enabled Healthcare: A Hands-On Exploration Using Google Sheets Tools you will explore

* TensorFlow
* Keras
* Python
* Natural Language Processing (NLP) Tools
* SQL
* Matplotlib
* Power BI
* Healthcare Data Integration Tools
* Electronic Health Record (EHR) Systems
* Patient Scheduling and Coordination Platforms
* AI-Powered Diagnostic Tools
* Medical Imaging Analysis Tools

Online proctored exam included, with one free retake.
Exam format: 50 questions, 70% passing, 90 minutes, online proctored exam

Access to all materials and exams is provided for 365 days after delivery.

Instructor-led OR Self-paced course + Official exam + Digital badge

Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)