MLOps Engineering on AWS [GK7395]

Tijdsduur
Locatie
Op locatie, Online
Startdatum en plaats

MLOps Engineering on AWS [GK7395]

Global Knowledge Network Netherlands B.V.
Logo van Global Knowledge Network Netherlands B.V.
Opleiderscore: starstarstarstar_halfstar_border 7,5 Global Knowledge Network Netherlands B.V. heeft een gemiddelde beoordeling van 7,5 (uit 185 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
computer Online: VIRTUAL TRAINING CENTER
2 feb. 2026 tot 4 feb. 2026
Toon rooster
event 2 februari 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244181.1
event 3 februari 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244181.2
event 4 februari 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244181.3
computer Online: VIRTUAL TRAINING CENTER
13 apr. 2026 tot 15 apr. 2026
Toon rooster
event 13 april 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247478.1
event 14 april 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247478.2
event 15 april 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247478.3
placeNieuwegein (Iepenhoeve 5)
5 mei. 2026 tot 7 mei. 2026
Toon rooster
event 5 mei 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244182.1
event 6 mei 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244182.2
event 7 mei 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244182.3
computer Online: VIRTUAL TRAINING CENTRE
5 mei. 2026 tot 7 mei. 2026
Toon rooster
event 5 mei 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244182V.1
event 6 mei 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244182V.2
event 7 mei 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244182V.3
computer Online: VIRTUAL TRAINING CENTER
17 aug. 2026 tot 19 aug. 2026
Toon rooster
event 17 augustus 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244183.1
event 18 augustus 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244183.2
event 19 augustus 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244183.3
computer Online: VIRTUAL TRAINING CENTER
2 sep. 2026 tot 4 sep. 2026
Toon rooster
event 2 september 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247479.1
event 3 september 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247479.2
event 4 september 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247479.3
placeNieuwegein (Iepenhoeve 5)
16 nov. 2026 tot 18 nov. 2026
Toon rooster
event 16 november 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244184.1
event 17 november 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244184.2
event 18 november 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244184.3
computer Online: VIRTUAL TRAINING CENTRE
16 nov. 2026 tot 18 nov. 2026
Toon rooster
event 16 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244184V.1
event 17 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244184V.2
event 18 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244184V.3
Beschrijving

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

This course builds upon and extends the DevOps methodology prevalent in software development to build, train, and deploy machine learning (ML) models. The course is based on the four-level MLOPs maturity framework. The course focuses on the first three levels, including the initial, repeatable, and reliable levels. The course stresses the importance of data, model, and code to successful ML deployments. It demonstrates the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course also discusses the use of tools and processes to monitor and take actio…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Engineering, Amazon Web Services (AWS), Cloud Computing, Kubernetes en Traffic management.

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

This course builds upon and extends the DevOps methodology prevalent in software development to build, train, and deploy machine learning (ML) models. The course is based on the four-level MLOPs maturity framework. The course focuses on the first three levels, including the initial, repeatable, and reliable levels. The course stresses the importance of data, model, and code to successful ML deployments. It demonstrates the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course also discusses the use of tools and processes to monitor and take action when the model prediction in production drifts from agreed-upon key performance indicators.

OBJECTIVES

In this course, you will learn to:

  • Explain the benefits of MLOps
  • Compare and contrast DevOps and MLOps
  • Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
  • Set up experimentation environments for MLOps with Amazon SageMaker
  • Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
  • Describe three options for creating a full CI/CD pipeline in an ML context
  • Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
  • Demonstrate how to monitor ML based solutions
  • Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data

AUDIENCE

This course is intended for:

- MLOps engineers who want to productionize and monitor ML models in the AWS cloud
- DevOps engineers who will be responsible for successfully deploying and maintaining ML models in production

CONTENT

Day 1

Module 1: Introduction to MLOps

  • Processes
  • People
  • Technology
  • Security and governance
  • MLOps maturity model

Module 2: Initial MLOps: Experimentation Environments in SageMaker Studio

  • Bringing MLOps to experimentation
  • Setting up the ML experimentation environment
  • Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
  • Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
  • Workbook: Initial MLOps

Module 3: Repeatable MLOps: Repositories

  • Managing data for MLOps
  • Version control of ML models
  • Code repositories in ML

Module 4: Repeatable MLOps: Orchestration

  • ML pipelines
  • Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines

Day 2

Module 4: Repeatable MLOps: Orchestration (continued)

  • End-to-end orchestration with AWS Step Functions
  • Hands-On Lab: Automating a Workflow with Step Functions
  • End-to-end orchestration with SageMaker Projects
  • Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
  • Using third-party tools for repeatability
  • Demonstration: Exploring Human-in-the-Loop During Inference
  • Governance and security
  • Demonstration: Exploring Security Best Practices for SageMaker
  • Workbook: Repeatable MLOps

Module 5: Reliable MLOps: Scaling and Testing

  • Scaling and multi-account strategies
  • Testing and traffic-shifting
  • Demonstration: Using SageMaker Inference Recommender
  • Hands-On Lab: Testing Model Variants

Day 3

Module 5: Reliable MLOps: Scaling and Testing (continued)

  • Hands-On Lab: Shifting Traffic
  • Workbook: Multi-account strategies

Module 6: Reliable MLOps: Monitoring

  • The importance of monitoring in ML
  • Hands-On Lab: Monitoring a Model for Data Drift
  • Operations considerations for model monitoring
  • Remediating problems identified by monitoring ML solutions
  • Workbook: Reliable MLOps
  • Hands-On Lab: Building and Troubleshooting an ML Pipeline
Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
infoEr is een telefoonnummer vereist om deze informatieaanvraag in behandeling te nemen. (optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)