MLOps Engineering on AWS [GK7395]
computer Online: VIRTUAL TRAINING CENTER 2 feb. 2026 tot 4 feb. 2026Toon rooster event 2 februari 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244181.1 event 3 februari 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244181.2 event 4 februari 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244181.3 |
computer Online: VIRTUAL TRAINING CENTER 13 apr. 2026 tot 15 apr. 2026Toon rooster event 13 april 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247478.1 event 14 april 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247478.2 event 15 april 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247478.3 |
placeNieuwegein (Iepenhoeve 5) 5 mei. 2026 tot 7 mei. 2026Toon rooster event 5 mei 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244182.1 event 6 mei 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244182.2 event 7 mei 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244182.3 |
computer Online: VIRTUAL TRAINING CENTRE 5 mei. 2026 tot 7 mei. 2026Toon rooster event 5 mei 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244182V.1 event 6 mei 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244182V.2 event 7 mei 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244182V.3 |
computer Online: VIRTUAL TRAINING CENTER 17 aug. 2026 tot 19 aug. 2026Toon rooster event 17 augustus 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244183.1 event 18 augustus 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244183.2 event 19 augustus 2026, 10:00-18:30, VIRTUAL TRAINING CENTER, NL244183.3 |
computer Online: VIRTUAL TRAINING CENTER 2 sep. 2026 tot 4 sep. 2026Toon rooster event 2 september 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247479.1 event 3 september 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247479.2 event 4 september 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL247479.3 |
placeNieuwegein (Iepenhoeve 5) 16 nov. 2026 tot 18 nov. 2026Toon rooster event 16 november 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244184.1 event 17 november 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244184.2 event 18 november 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL244184.3 |
computer Online: VIRTUAL TRAINING CENTRE 16 nov. 2026 tot 18 nov. 2026Toon rooster event 16 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244184V.1 event 17 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244184V.2 event 18 november 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL244184V.3 |
Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge
Online of op locatie er is altijd een vorm die bij je past.
Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.
OVERVIEW
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge
Online of op locatie er is altijd een vorm die bij je past.
Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.
OVERVIEW
OBJECTIVES
In this course, you will learn to:
- Explain the benefits of MLOps
- Compare and contrast DevOps and MLOps
- Evaluate the security and governance requirements for an ML use case and describe possible solutions and mitigation strategies
- Set up experimentation environments for MLOps with Amazon SageMaker
- Explain best practices for versioning and maintaining the integrity of ML model assets (data, model, and code)
- Describe three options for creating a full CI/CD pipeline in an ML context
- Recall best practices for implementing automated packaging, testing and deployment. (Data/model/code)
- Demonstrate how to monitor ML based solutions
- Demonstrate how to automate an ML solution that tests, packages, and deploys a model in an automated fashion; detects performance degradation; and re-trains the model on top of newly acquired data
AUDIENCE
This course is intended for:
- MLOps engineers who want to productionize and monitor ML
models in the AWS cloud
- DevOps engineers who will be responsible for successfully
deploying and maintaining ML models in production
CONTENT
Day 1
Module 1: Introduction to MLOps
- Processes
- People
- Technology
- Security and governance
- MLOps maturity model
Module 2: Initial MLOps: Experimentation Environments in SageMaker Studio
- Bringing MLOps to experimentation
- Setting up the ML experimentation environment
- Demonstration: Creating and Updating a Lifecycle Configuration for SageMaker Studio
- Hands-On Lab: Provisioning a SageMaker Studio Environment with the AWS Service Catalog
- Workbook: Initial MLOps
Module 3: Repeatable MLOps: Repositories
- Managing data for MLOps
- Version control of ML models
- Code repositories in ML
Module 4: Repeatable MLOps: Orchestration
- ML pipelines
- Demonstration: Using SageMaker Pipelines to Orchestrate Model Building Pipelines
Day 2
Module 4: Repeatable MLOps: Orchestration (continued)
- End-to-end orchestration with AWS Step Functions
- Hands-On Lab: Automating a Workflow with Step Functions
- End-to-end orchestration with SageMaker Projects
- Demonstration: Standardizing an End-to-End ML Pipeline with SageMaker Projects
- Using third-party tools for repeatability
- Demonstration: Exploring Human-in-the-Loop During Inference
- Governance and security
- Demonstration: Exploring Security Best Practices for SageMaker
- Workbook: Repeatable MLOps
Module 5: Reliable MLOps: Scaling and Testing
- Scaling and multi-account strategies
- Testing and traffic-shifting
- Demonstration: Using SageMaker Inference Recommender
- Hands-On Lab: Testing Model Variants
Day 3
Module 5: Reliable MLOps: Scaling and Testing (continued)
- Hands-On Lab: Shifting Traffic
- Workbook: Multi-account strategies
Module 6: Reliable MLOps: Monitoring
- The importance of monitoring in ML
- Hands-On Lab: Monitoring a Model for Data Drift
- Operations considerations for model monitoring
- Remediating problems identified by monitoring ML solutions
- Workbook: Reliable MLOps
- Hands-On Lab: Building and Troubleshooting an ML Pipeline
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

